How to read an APA reference
How to read a book reference

Generic APA book reference

Author, A. A. (publication year). *Title of work*: Subtitle of work. Place of publication: Publisher.


Note: Title of the book is in Italics (Alt +i)
Place of publication is = City, State/Country

e.g. Boston = city
MA = State
Author: Stoknes, Per Espen. Author.
Title: What we think about when we try not to think about global warming: toward a new psychology of climate action / Per Espen Stoknes; foreword by Jorgen Randers.
Published: White River Junction, Vermont: Chelsea Green Publishing, [2015]
©2015

LOCATION: Upper Level - New West
CALL #: BF 353.5 C55 S769 2015
STATUS: AVAILABLE

Permanent link to this record: http://orca.douglascollege.ca/record=b193798

Description: xxii, 290 pages : illustrations ; 23 cm
Content: text
Media: unmediated
Carrier: volume

Bibliography: Includes bibliographical references (pages 251-275) and index.

Contents: Part I. Thinking: understanding the climate paradox. They psychology of climate paradox -- "Climate is the new Marx": the many faces of skepticism and denial -- The human animal, as seen by evolutionary psychology -- How climate facts and risks are perceived: cognitive psychology -- What others are saying: social psychology -- The roots of denial: the psychology of identity -- The five psychological barriers to climate action -- Part II. Doing: if it doesn't work, do something else. From barriers to solutions -- The power of social networks -- Reframing the climate messages -- Make it simple to choose right -- Use the power of stories to re-story climate -- New signals of progress -- Part III. Being: inside the living air. The air's way of being -- Stand up for your depression! -- Climate
Author, A. A. (publication year). Title of work: Subtitle of work. Place of publication: Publisher.
Where to find the year of publication

Author: Stoknes, Per Espen. Author.

Title: What we think about when we try not to think about global warming: toward a new psychology of climate action / Per Espen Stoknes; foreword by Jørgen Randers.

Published: White River Junction, Vermont: Chelsea Green Publishing, [2015]

©2015

Author, A. A. (publication year). Title of work: Subtitle of work. Place of publication: Publisher.
Where to find the book title

Author: Stoknes, Per Espen.
Title: What we think about when we try not to think about global warming: toward a new psychology of climate action / Per Espen Stoknes; foreword by Jorgen Randers.
Published: White River Junction, Vermont: Chelsea Green Publishing, [2015]
©2015
Where to find the book subtitle

Author, A. A. (publication year). Title of work: Subtitle of work. Place of publication: Publisher.

Author: Stoknes, Per Espen. Author.
Title: What we think about when we try not to think about global warming: toward a new psychology of climate action / Per Espen Stoknes; foreword by Jorgen Randers.
Published: White River Junction, Vermont: Chelsea Green Publishing, [2015]
©2015
Where to find the place of publication

(City, State)

Author: Stoknes, Per Espen. Author.
Title: What we think about when we try not to think about global warming: toward a new psychology of climate action / Per Espen Stoknes; foreword by Jorgen Randers.
Published: White River Junction, Vermont: Chelsea Green Publishing, [2015]
©2015
Where to find the publisher

Author: Stoknes, Per Espen. 
Title: What we think about when we try not to think about global warming: toward a new psychology of climate action / Per Espen Stoknes; foreword by Jorgen Randers.
©2015

Author, A. A. (publication year). *Title of work: Subtitle of work.* Place of publication: Publisher.
How to read a an APA journal reference

Generic APA journal article reference

Author, A. A. (publication year). Title of article: Subtitle of article. *Journal Title*, Volume# (Issue#), page range. doi: 

e.g.

Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: *CLIMATIC changes
*GLOBAL warming
*RAIN & rainfall
*GLOBAL temperature changes
*ENVIRONMENTAL degradation

Author-Supplied Keywords: Atmosphere/Ocean Structure/Phenomena
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven tropical Pacific rainfall variability in 32 CMIP5 models forced under the representative concentration pathway 8.5 (RCP8.5) scenario are examined, revealing that the pattern of changes in ENSO-driven rainfall is not only gradually enhanced but also shifts steadily eastward along with the global-mean temperature increase. Using a recently developed moisture budget decomposition method, it is shown that the projected changes in ENSO-driven rainfall variability in the tropical Pacific can be primarily attributed to a projected increase in both mean-state surface moisture and spatially relative changes in mean-state SST, defined as the departure of local SST changes from the tropical mean. The enhanced moisture increase enlarges the thermodynamic component of ENSO rainfall changes. The enhanced El Niño-like changes in mean-state SST steadily move the dynamic component of changes in ENSO-driven rainfall variability to the central-eastern Pacific, along with increasing global-mean temperature. [ABSTRACT FROM AUTHOR]
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven tropical Pacific rainfall variability in 32 CMIP5 models forced under the representative concentration pathway 8.5 (RCP8.5) scenario are examined, revealing that the pattern of changes in ENSO-driven rainfall is not only gradually enhanced but also shifts steadily eastward along with the global-mean temperature increase. Using a recently developed moisture budget decomposition method, it is shown that the projected changes in ENSO-driven rainfall variability in the tropical Pacific can be primarily attributed to a projected increase in both mean-state surface moisture and spatially relative changes in mean-state SST, defined as the departure of local SST changes from the tropical mean. The enhanced moisture increase enlarges the thermodynamic component of ENSO rainfall changes. The enhanced El Niño-like changes in mean-state SST already move the dynamic component of changes in ENSO-driven rainfall variability to the central-eastern Pacific, along with increasing global-mean temperature.

Copyright of Journal of Climate is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

ISSN: 0894-8755

DOI: 10.1175/JCLI-D-16-0058.1

Accession Number: 11702387

Notes: If HTML, PDF or Linked Full Text is not present, click on Find the Article for possible full text online or in print.
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: CLIMATIC changes
GLOBAL warming
RAIN & rainfall
GLOBAL temperature changes
ENVIRONMENTAL degradation

Author-Supplied Keywords: Atmos/Ocean Structure/Phenomena
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño–Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven rainfall variability are examined.

DOI: 10.1175/JCLI-D-16-0058.1

Accession Number: 117022387

Notes: If HTML, PDF or Linked Full text is not present, click on Find the Article for possible full text online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: CLIMATIC changes, GLOBAL warming, RAIN & rainfall, GLOBAL temperature changes, ENVIRONMENTAL degradation

Author-Supplied Keywords: AtmosOcean Structure/Phenomena, Climate change, Climate models, ENSO, Models and modeling, Moisture/moisture budget, Physical Meteorology and Climatology, Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0058.1

Accession Number: 117022387

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: CLIMATIC changes
GLOBAL warming
RAIN & rainfall
GLOBAL temperature changes
ENVIRONMENTAL degradation

Author-Supplied Keywords: Atmosphere/Ocean Structure/Phenomena
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0088.1

Accession Number: 17022307

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: *CLIMATIC changes
*GLOBAL warming
*ENSO
*GLOBAL temperature changes
*ENVIRONMENTAL degradation

Author-Supplied Keywords: AtmoOcean Structure/Phenomena
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0018.1

Accession Number: 117022367

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: *CLIMATIC changes*, *GLOBAL warming*, *RAIN & rainfall*, *GLOBAL temperature changes*, *ENVIRONMENTAL degradation*

Author-Supplied Keywords: Climate change, Climate models, ENSO, Models and modeling, Moisture/moisture budget, Physical Meteorology and Climatology, Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0068.1

Accession Number: 11702387

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: CLIMATIC changes
GLOBAL warming
RAIN & rainfall
GLOBAL temperature changes
ENVIRONMENTAL degradation

Author-Supplied Keywords: AtmoOcean Structure/Phenomena
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0068.1

Accession Number: 117022387

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: CLIMATIC changes
GLOBAL warming
RAIN & rainfall
GLOBAL temperature changes
ENVIRONMENTAL degradation

Author-Supplied Keywords:
AtmoOcean Structure/Phenomenon
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0058.1

Accession Number: 117022367

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: "CLIMATIC changes'
"GLOBAL warming'
"RAIN & rainfall'
"GLOBAL temperature changes'
"ENVIRONMENTAL degradation'

Author-Supplied Keywords: AtmosOcean Structure/Phenomena
Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in response to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0058.1

Accession Number: 117022367

Notes: If HTML, PDF or Linked Fulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images
Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part I: Multimodel Ensemble Results.

Authors: Huang, Ping


Document Type: Article

Subject Terms: *CLIMATIC changes
*GLOBAL warming
*RAN & rainfall
*GLOBAL temperature changes
*ENVIRONMENTAL degradation

Author-Supplied Keywords: Atmosphere/Ocean Structure/Phenomena

Climate change
Climate models
ENSO
Models and modeling
Moisture/moisture budget
Physical Meteorology and Climatology
Rainfall

Abstract: El Niño-Southern Oscillation (ENSO) is one of the most important drivers of climatic variability on the global scale. Much of this variability arises in responses to ENSO-driven changes in tropical Pacific rainfall. Previous research has shown that the ENSO-driven tropical Pacific rainfall variability can shift east and intensify in response to global warming, even if ENSO-related SST variability remains unchanged. Here, the twenty-first century changes in ENSO-driven

DOI: 10.1175/JCLI-D-16-0058.1

Accession Number: 17022387

Notes: If HTML, PDF or LinkedFulltext is not present, click on Find the Article for possible fulltext online or in print.

Images: Show all 11 images